Mass Spectrometry

By: Sujatha K KUD

1

Mass Spectrometry (MS)

 An analytical technique for measuring the massto-charge ratio (*m/z*) of ions in the gas phase.

- Mass spectrometry is our most valuable analytical tool for determining accurate molecular masses.
- Also can give information about structure.
- Proteins can now be sequenced by MS.

What is a Mass Spectrometer?

A Mass Spectrometer is a machine that weighs molecules !

14-3

What is a Mass Spectrometer?

A Mass Spectrometer is a machine that weighs molecules !

14-4

Mass Spectrometry (MS)

Schematic of an electron ionization mass spectrometer (EI-MS).

Double Focusing Mass Spectrometer

4-7

Mass Analyzers - the quadrupole vs. magnetic sector

MS-MS

Figure 20-24 Schematic of a tandem quadrupole MS/MS instrument. (Courtesy of Finnigan MAT, San Jose, C.A.)

- Matrix Assisted Laser Desorption Ionization
- Analyte co-deposited with Matrix
- Laser excites matrix which transfers energy to analyte
- Produces singly charged species
- Typically used for large biomolecules / polymers
- MALDI is a high mass/pulsed source so usually combined with TOF

PROFILE Scan 35 from ...ta sept 24.04\0.01+0.036 extrste mode 1 609.xms

BP 609.50 (1384	=100%) 0.01+0.036 extrste mode 1	609.xms		0.472 min. Scans	s: 3-67 Channel: 1 Ion: 2000) us RIC: 215
ounts						
-						
-						
]						
_						
-						
1.5		609.50				
1		0.3541				
		1304				
-						
-						
-						
]						
-						
1.0-						
-						
-						
-						
-						
1						
-		610.45				
0.5-		0.4533 471				
-		\land				
]						
-						
-						
-			611.45 0 3952			
-			114			
			\square			
0.0						
-						
605.0	607.5	610.0	612.5	615.0	617.5	

14-13

A Mass Spectrometer

 A mass spectrometer is designed to do three things

- Convert neutral atoms or molecules into a beam of positive (or rarely negative) ions.
- Separate the ions on the basis of their mass-to-charge (*m/z*) ratio.
- Measure the relative abundance of each ion.

A Mass Spectrometer

Electron Ionization MS

- In the ionization chamber, the sample is bombarded with a beam of high-energy electrons.
- Collisions between these electrons and the sample result in loss of electrons from sample molecules and formation of positive ions.

$$\begin{array}{c} H \\ H \\ -C \\ H \\ H \end{array} \stackrel{H}{\longrightarrow} \left[\begin{array}{c} H \\ H \\ -C \\ H \end{array} \right]^{\ddagger} + 2 e^{-} \\ \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{\longrightarrow} \left[\begin{array}{c} I \\ -C \\ I \end{array} \right] \stackrel{(+)}{ I } \stackrel{(+)$$

(a radical cation)

Molecular Ion

- Molecular ion (M*): A radical cation formed by removal of a single electron from a parent molecule in a mass spectrometer.
- For our purposes, it does not matter which electron is lost; radical cation character is delocalized throughout the molecule; therefore, we write the molecular formula of the parent molecule in brackets with
 - a plus sign to show that it is a cation.
 - a dot to show that it has an odd number of electrons.

 What we have described is called electron ionization mass spectrometry (EI-MS).

Other mass spectrometry techniques include

- fast atom bombardment (FAB).
- matrix-assisted laser desorption ionization (MALDI).
- chemical ionization (CI).
- electrospray ionization (ESI).

Resolution

- Resolution: A measure of how well a mass spectrometer separates ions of different mass.
 - Low resolution: Refers to instruments capable of separating only ions that differ in nominal mass; that is ions that differ by at least 1 or more atomic mass units (amu).

$$\equiv \ominus + CH_3Br \longrightarrow \equiv -CH_3$$

$$amu = 25 \quad amu = 94 \quad amu = 40$$

Resolution

- Resolution: A measure of how well a mass spectrometer separates ions of different mass.
 - High resolution: Refers to instruments capable of separating ions that differ in mass by as little as 0.0001 amu. Can Help Determine Molecular Formula

amu = 118amu = 118exact mass = 118.0783exact mass = 118.0590

Exact Mass takes into account mass of major isotopes to several decimal points

Isotopes

•	Virtually all elements	Element	Atomic weight	Iso to pe	Mass (amu)	Relative Abundance
	common to	hydro gen	1.0079	^{1}H	1.00783	100
	organic			^{2}H	2.01410	0.016
	compounds	carbon	12.011	$^{12}_{12}C$	12.0000	100
	compounds			¹³ C	13.0034	1.11
	are mixtures	nitro ge n	14.007	^{14}N	14.0031	100
	of isotopes.	0		^{15}N	15.0001	0.38
	-	oxygen	15.999	¹⁶ O	15.9949	<i>100</i>
				¹⁸ O	17.9992	0.20
		sulfur	32.066	³² S	31.9721	100
		·		³⁴ S	33.9679	4.40
		ch lorine	35.453	³⁵ Cl	34.9689	100
				³⁷ Cl	36.9659	32.5
		brom ine	79.904	⁷⁹ Br	78.9183	100
				⁸¹ Br	80.9163	98.0

Resolution

- C₃H₆O and C₃H₈O have nominal masses of 58 and 60, and can be distinguished by low-resolution MS.
- C_3H_8O and $C_2H_4O_2$ both have nominal masses of 60.
- distinguish between them by high-resolution MS.

Molecular Formula	Nominal Mass	Precise Mass
$C_3 H_8 O$	60	60.05754
$C_2H_4O_2$	60	60.02112

Isotopes

•	Some elements	Element	Atomic weight	Iso to pe	Mass (amu)	Relative Abundance
	have isotopic	hydro gen	1.0079	${}^{1}_{2}H$	1.00783	100
	ratios that			^{2}H	2.01410	0.016
	can load to	carbon	12.011	$^{12}_{12}C$	12.0000	100
				¹⁵ C	13.0034	1.11
	distinctive	nitro ge n	14.007	^{14}N	14.0031	<i>100</i>
	patterns in	C		^{15}N	15.0001	0.38
	the ms.	oxygen	15.999	¹⁶ O	15.9949	<i>100</i>
				¹⁸ O	17.9992	0.20
		su l fu r	32.066	³² S	31.9721	100
				³⁴ S	33.9679	4.40
		ch lorine	35.453	³⁵ Cl	34.9689	100
				³⁷ Cl	36.9659	32.5
		bromine	79.904	⁷⁹ Br	78.9183	100
				⁸¹ Br	80.9163	98.0

M+2 and M+1 Peaks

- The most common elements giving rise to significant M + 2 peaks are chlorine and bromine.
 - Chlorine in nature is 75.77% ³⁵Cl and 24.23% ³⁷Cl.
 - A ratio of M to M + 2 of approximately 3:1 indicates the presence of a single chlorine in a compound, as seen in the MS of chloroethane.

Brooks/Cole, Cengage Learning

M+2 and M+1 Peaks

- Bromine in nature is 50.7% ⁷⁹Br and 49.3% ⁸¹Br.
- A ratio of M to M + 2 of approximately 1:1 indicates the presence of a single bromine atom in a compound, as seen in the MS of 1-bromopropane.

@ Brooks/Cole, Cengage Learning

M+2 and M+1 Peaks

- Sulfur is the only other element common to organic compounds that gives a significant M + 2 peak
 - ³²S = 95.02% and ³⁴S = 4.21%
- Because M + 1 peaks are relatively low in intensity compared to the molecular ion and often difficult to measure with any precision, they are generally not useful for accurate determinations of molecular weight.

Molecular lons and Interpreting a mass spectrum

- The only elements to give significant M + 2 peaks are CI and Br.
 - If no large M + 2 peak is present, these elements are absent.
- Is the mass of the molecular ion odd or even?
- Nitrogen Rule: If a compound has
 - zero or an even number of nitrogen atoms, its molecular ion will have an even *m*/*z* value.
 - an odd number of nitrogen atoms, its molecular ion will have an odd *m*/*z* value.

Fragmentation of the Molecular Ion

- To attain high efficiency of molecular ion formation and give reproducible mass spectra, it is common to use electrons with energies of approximately 70 eV [6750 kJ (1600 kcal)/mol].
 - This energy is sufficient not only to dislodge one or more electrons from a molecule, but also to cause extensive fragmentation.
 - These fragments may be unstable as well and, in turn, break apart to even smaller fragments.

Fragmentation of M

- Fragmentation of a molecular ion, M, produces a radical and a cation.
 - Only the cation is detected by MS.

Fragmentation of M

- A great deal of the chemistry of ion fragmentation can be understood in terms of the formation and relative stabilities of carbocations in solution.
 - Where fragmentation occurs to form new cations, the mode that gives the most stable cation is favored.
 - The probability of fragmentation to form new carbocations increases in the order.

CH₃⁺ < 1° < 1° allylic < 2° allylic < 3° allylic 1° benzylic 2° benzylic 3° benzylic

Alkanes

- Fragmentation tends to occur in the middle of unbranched chains rather than at the ends.
- The difference in energy among allylic, benzylic,
 3°, 2°, 1°, and methyl cations is much greater than the difference among comparable radicals.
 - Where alternative modes of fragmentation are possible, the more stable carbocation tends to form in preference to the more stable radical.

Mass spectrum of octane.

@ Brooks/Cole, Cengage Learning

14-31

Alkanes

Mass spectrum of methylcyclopentane.

Alkanes

Mass spectrum of methylcyclopentane.

@ Brooks/Cole, Cengage Learning

amu = 41

Alkenes

Alkenes characteristically

- show a strong molecular ion peak.
- cleave readily to form resonance-stabilized allylic cations.

 $[CH_2 = CHCH_2 CH_2 CH_3]^{-} \longrightarrow CH_2 = CHCH_2^+ + \cdot CH_2 CH_3$

Alkynes

Alkynes characteristically

- show a strong molecular ion peak.
- cleave readily to form the resonance-stabilized propargyl cation or substituted propargyl cations.

 $HC \equiv C^{+}CH_{2}^{+} \leftarrow HC \equiv C \equiv CH_{2}^{+}$

3-Propynyl cation (Propargyl cation)

Cyclohexenes

 Cyclohexenes give a 1,3-diene and an alkene, a process that is the reverse of a Diels-Alder reaction (Chapter 24).

Ionization of Lone Pair-Containing Molecules

 Perhaps not surprisingly, when radicals will be taken out of lone-pair containing molecules, it is the lone pair that can often lose the electron.

$$\left[CH_{3}CH_{2}OCH(CH_{3})_{2}\right]^{+}$$
 $CH_{3}CH_{2}OCH(CH_{3})_{2}$

Alcohols

- One of the most common fragmentation patterns of alcohols is loss of H₂O to give a peak which corresponds to M-18.
- Another common pattern is loss of an alkyl group from the carbon bearing the OH to give a resonance-stabilized oxonium ion and an alkyl radical.

Molecular ion A radical (a radical cation) A resonance-stabilized oxonium ion

Similar Rearrangements for Amines

14**-**38

Alcohols

Mass spectrum of 1-butanol.

Amines

The most characteristic fragmentation pattern of 1°, 2°, and 3° aliphatic amines is β-cleavage. CH₃ CH₃-CH-CH₂-CH₂-NH₂ β-cleavage CH₃-CH-CH₂·+ CH₂=NH₂

Brooks/Cole, Cengage Learning

14-40

Carbonyls

Carbonyls can also fragment. Propose a mechanism for this transformation

Carbonyls

Or alternatively, you could push arrows other way to methyl radical

Aldehydes and Ketones

@ Brooks/Cole, Cengage Learning

m/z 113

Why might you expect 43 be larger then 113?

14-43

Aldehydes and Ketones

@ Brooks/Cole, Cengage Learning

Aldehydes and Ketones

Who's to say you can't draw it as a radical mechanism too?

Carboxylic Acids

Characteristic fragmentation patterns are

- α -cleavage to give the ion [CO₂H]⁺ with *m*/*z* 45.
- McLafferty rearrangement.

Molecular ion m/z 88

Carboxylic Acids

Mass spectrum of butanoic acid.

What are the fragmentations at 60 and 45?

Carboxylic Acids

Mass spectrum of butanoic acid.

α-cleavage and McLafferty rearrangement

Aromatic Hydrocarbons

- Most show an intense molecular ion peak.
- Most alkylbenzenes show a fragment ion of m/z 91.

cation

© Brooks/Cole, Cengage Learning

13 Fragmentation of Ethers

The molecular ion peak is usually weak in ethers. The oxygen atom mediates the major fragment and creates a β cleavage that results in a resonance stabilized cation. This peak is prominent and sometimes is the base peak.

The fragment can also undergo a subsequent rearrangement which typically creates the base peak when the α carbon is substituted.

Ethers also produce prominent alkyl fragments when the C–O bond (α bond) is broken and the fragment containing oxygen is a radical.

ethers

m/z 94

THANK YOU